Abstract

The neural plasticity associated with behavioral sensitization following repeated administration of a psychostimulant methamphetamine (METH) is thought to require synthesis of new proteins. The aim of the present study was to investigate the role of p70-S6 kinase (p70-S6K) phosphorylation, which contributes to the selective translation of a unique family of mRNA, in mediating both the METH-induced rewarding effect and its sensitization. An intra-nucleus accumbens (N.Acc.) pre-injection with 0.025 pmol/rat of a selective p70-S6K inhibitor rapamycin failed to affect the METH-induced conditioned place preference. However, this treatment clearly abolished the development of sensitization of the METH-induced conditioned place preference. Consistent with the behavioral assay, the level of the immunoreactivity of phosporylated-p70-S6K was not changed in the cytosolic fraction of the N.Acc. obtained from rats that had revealed the METH-induced rewarding effect. In contrast, the immunoreactivities in the cytosolic preparation for Western blotting and immunohistochemical density of phosphorylated-p70-S6K were significantly increased in the N.Acc. obtained from METH-sensitized rats as compared with those with chronic saline treatment. However, the immunoreactivities of phosphorylated-extracellular signal-regulated kinase and phosphorylated-ribosomal S6 protein were not significantly altered in the N.Acc. under the same condition. The present data provide evidence for the change in the translation rate, which can be regulated by S6K phosphorylation, in the N.Acc. during the development of sensitization to METH-induced rewarding effects in rats.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call