Abstract

It has recently been reported that the exposure of human spermatozoa to an extremely low frequency (ELF) electromagnetic field (EMF) with a square waveform of 5 mT amplitude and frequency of 50 Hz improves sperm motility. The functional relationship between the energy metabolism and the enhancement of human sperm motility induced by ELF-EMF was investigated. Sperm exposure to ELF-EMF resulted in a progressive and significant increase of mitochondrial membrane potential and levels of ATP, ADP and NAD(+) that was associated with a progressive and significant increase in the sperm kinematic parameters. No significant effects were detected on other parameters such as ATP/ADP ratio and energy charge. When carbamoyl cyanide m-chlorophenylhydrazone (CICCP) was applied to inhibit the oxidative phosphorylation in the mitochondria, the values of energy parameters and motility in the sperm incubated in the presence of glucose and exposed to ELF-EMF did not change, thus indicating that the glycolysis was not involved in mediating ELF-EMF stimulatory effect on motility. By contrast, when pyruvate and lactate were provided instead of glucose, the energy status and motility increased significantly in ELF-EMF-treated sperm. Under these culture conditions, the inhibition of glycolitic metabolism by 2-deoxy-D-glucose (DOG) again resulted in increased values of energy and kinematic parameters, indicating that gluconeogenesis was not involved in producing glucose for use in glycolysis. We concluded that the key role in mediating the stimulatory effects exerted by ELF-EMF on human sperm motility is played by mitochondrial oxidative phosphorylation rather than glycolysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.