Abstract

miRNAs may play effective roles in breast cancer so modulating their expression levels could have therapeutic benefits. Recent studies have found the combination of miRNA-based therapeutics with conventional drugs as promising. This study aimed to find drug-responsive miRNAs, and explore their anticancer activities in HER2+ breast cancer cells and regulatory role in the trastuzumab response. qRT-PCR-array analysis was performed with effective concentrations of tamoxifen and trastuzumab treated BT-474, SK-BR-3 and MCF-7 cells. Motility and invasion analyses were performed with wound healing and xCELLigence impedance-based assays respectively. Viability of cells following mimic transfection and drug treatment was assessed by WST-1 assay. Western blot analysis was used to assess miR-770-5p regulation of proteins and their phosphorylated forms. The clinical relevance of miR-770-5p was examined by TCGA data analysis. The qRT-PCR-array results indicated that miR-770-5p was responsive in a drug and cell line independent manner. Overexpression of miR-770-5p inhibited the motility and cell invasion through regulation of AKT and ERK proteins. Additionally, miR-770-5p potentiated the effectiveness of trastuzumab. Thus, regulating the expression level of miR-770-5p in combination with trastuzumab treatment may simultaneously inhibit the downstream elements of PI3K and MAPK signalling, thereby blocking the proliferation, motility and invasion capacities of HER2+ breast cancer cells.

Highlights

  • Breast cancer is the most common malignancy in women, constituting approximately 30% of all cancer types [1]

  • The putative roles of miRNAs in tamoxifen or trastuzumab responses were investigated by miRNA qRT arrays to search for differentially-expressed miRNAs between three different breast cancer cell lines

  • When the Differentially Expressed (DE) miRNA lists for the two cell lines were intersected, 64 miRNAs were found to be commonly responsive to trastuzumab, of which 62 downregulated and 2 upregulated (Fig 1A)

Read more

Summary

Introduction

Breast cancer is the most common malignancy in women, constituting approximately 30% of all cancer types [1]. Breast cancer is a heterogeneous disease with complex clinical behavior and responses to therapeutic intervention [2,3]. It is classified based on gene expression profiling, including HER2 positive (HER2+), luminal A or B, basal-like and presence of hormone receptors [4]. Tamoxifen citrate (TAM), which competes with the estrogen that binds to the estrogen receptor (ER), was the first selective estrogen receptor modulator (SERM) to be developed [6]. Tamoxifen has been used clinically for over 30 years as a partial agonist of ER to reduce the risk of recurrence and contralateral

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call