Abstract

AimsGlutamatergic receptors are important targets of ethanol. Intake of ethanol may produce analgesic effects. The present study examined the effects of ethanol on the activity of ionotropic glutamate receptors in spinal cord substantia gelatinosa (SG) neurons, critical neurons involved in nociceptive transmission. Main methodsWhole-cell recordings were made from SG neurons of the lumbar spinal cord slices from 15 to 20-day-old rats. Ethanol and glutamate receptor agonists or antagonists were applied by superfusion. Key findingEthanol (50 and 100 mM) applied by superfusion for 5 min dose-dependently decreased the amplitude of evoked excitatory postsynaptic potential in SG neurons. Superfusion of ethanol (100 mM) for 15 min consistently inhibited NMDA- or AMPA-induced depolarizations in SG neurons. Ethanol (100 mM) also inhibited the depolarizations induced by glutamate. However, ethanol inhibition of glutamate-induced responses significantly decreased at 10–15 min following continuous superfusion, suggesting the development of acute tolerance to the inhibition during prolonged exposure. Application of MPEP hydrochloride (an antagonist of metabotropic glutamate receptor [mGluR] 5) or GF109203X (a protein kinase C [PKC] inhibitor), together with ethanol significantly blocked the tolerance. The inhibition by ethanol of the NMDA-induced, but not AMPA-induced, depolarizations significantly decreased at 15 min during continuous superfusion while ACPD (a mGluR agonist) was co-applied with ethanol. SignificanceThe results suggest that (1) ethanol exposure may inhibit ionotropic glutamate receptor-mediated neurotransmission; (2) regulation of NMDA receptor function by mGluR5/PKC pathways may be involved in the development of the tolerance to ethanol inhibition of glutamate-induced responses during prolonged exposure in SG neurons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call