Abstract

Acute treatment with the diuretic furosemide (Lasix) produces a reduction in plasma Na<sup>+</sup> and volume as well as increased thirst and salt appetite. The resulting hypovolemia stimulates the well-known counter-regulatory physiological response from the renin-angiotensin-aldosterone system. However, the neurochemical players underpinning the behavioral responses of thirst and salt appetite are less clear. Previously, we have reported that salt-replete deoxycorticosterone (DOCA) treatment activates mesolimbic structures associated with reward and goal-seeking behavior. The present study was designed to test whether the same brain regions are affected in a salt-depleted state. In experiment 1, two groups of adult male Sprague-Dawley (SD) rats were injected with Lasix (10 mg/rat, s.c.) and 18 h later were allowed access either to 2% NaCl solution (‘Lasix+salt’) or only to tap water (‘Lasixnosalt’) for 2 h. For comparison purposes, a third group received an isotonic saline injection instead of Lasix and was allowed access to the 2% salt solution (Vehicle). All groups were permitted 24 h access to tap water. We found no differences in dynorphin-mRNA levels in any striatal and accumbal regions among any of the treatment groups. However, as found previously in DOCA-treated rats, there were increased enkephalin (ENK)-mRNA and decreased dopamine transporter (DAT) binding levels throughout the striatum in Lasix+salt and decreased ENK-mRNA in Lasixnosalt rats versus Vehicle. In experiment 2, the involvement of the ENKergic and/or dopaminergic system was tested in rats divided into the same three groups described in experiment 1. However, before access to salt or water, the Lasix+salt and the vehicle groups were administered either a δ-opioid, naltrindole or a dopamine D<sub>2</sub> antagonist, raclopride. Only the naltrindole-treated rats showed a blunted intake of salt solution. Thus, these findings along with our neurochemical results suggest that mesolimbic enkephalin might impact salt intake through dopaminergic systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.