Abstract

To investigate the roles of MAPKs and NF-kappaB in tumor necrosis factor alpha (TNFalpha)-induced expression of vascular cell adhesion molecule 1 (VCAM-1) in human rheumatoid arthritis synovial fibroblasts (RASFs). Human RASFs were isolated from synovial tissue obtained from patients with RA who underwent knee or hip surgery. The involvement of MAPKs and NF-kappaB in TNFalpha-induced VCAM-1 expression was investigated using pharmacologic inhibitors and transfection with short hairpin RNA (shRNA) and measured using Western blot, reverse transcriptase-polymerase chain reaction, and gene promoter assay. NF-kappaB translocation was determined by Western blot and immunofluorescence staining. The functional activity of VCAM-1 was evaluated by lymphocyte adhesion assay. TNFalpha-induced VCAM-1 expression, phosphorylation of p42/p44 MAPK, p38 MAPK, and JNK, and translocation of NF-kappaB were attenuated by the inhibitors of MEK-1/2 (U0126), p38 (SB202190), JNK (SP600125), and NF-kappaB (helenalin) or by transfection with their respective shRNA. TNFalpha-stimulated translocation of NF-kappaB into the nucleus and NF-kappaB promoter activity were blocked by Bay11-7082, but not by U0126, SB202190, or SP600125. VCAM-1 promoter activity was enhanced by TNFalpha in RASFs transfected with VCAM-1-Luc, and this promoter activity was inhibited by Bay11-7082, U0126, SB202190, and SP600125. Moreover, up-regulation of VCAM-1 increased the adhesion of lymphocytes to the RASF monolayer, and this adhesion was attenuated by pretreatment with helenalin, U0126, SP600125, or SB202190 prior to exposure to TNFalpha or by anti-VCAM-1 antibody before the addition of lymphocytes. In RASFs, TNFalpha-induced VCAM-1 expression is mediated through activation of the p42/p44 MAPK, p38 MAPK, JNK, and NF-kappaB pathways. These results provide new insights into the mechanisms underlying cytokine-initiated joint inflammation in RA and may inspire new targeted therapeutic approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.