Abstract

It is well known that dorsal raphe nucleus (DRN) is one of the key structures for the development of opioid analgesia and tolerance. An increased activity of ‘antiopioids’ like orphanin-FQ (OFQ) has been proposed as a possible mechanism for opioid tolerance. The present study evaluates the role of DRN-located OFQ in the opioid analgesic tolerance induced by repeated microinjections of morphine (MOR) into DRN. Male rats were implanted with chronic guide cannulae aimed at the DRN. Microinjection of MOR (0.5 μg in 0.5 μl) into DRN caused antinociception as quantified with the tail flick and the hot plate tests. When MOR microinjection was repeated twice daily, the antinociceptive effect disappeared within 2 days (tolerance). However, if each MOR microinjection was preceded (within 15 min) by a microinjection of the OFQ receptor antagonist nocistatin (NST) (1 ng in 0.5 μl) into the same DRN site, the microinjections of MOR always produced antinociception and did not induce tolerance. If NST microinjections were suspended, subsequent MOR microinjections induced tolerance. In MOR-tolerant rats, a single NST microinjection into the same DRN site was enough to restore the antinociceptive effect of MOR. On the other hand, if OFQ (1 ng in 0.5 μl) was microinjected into DRN, then MOR microinjection administered 15 min later into the same DRN site did not elicit antinociception. Finally, opioid tolerance induced by repeated systemic MOR injections (5 mg/kg, ip) was reversed by a single microinjection of NST into DRN. This emphasizes the central importance of DRN-located OFQ in the MOR analgesic tolerance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call