Abstract

Lipid peroxidation was investigated in relation with the hypersensitive reaction in cryptogein-elicited tobacco leaves. A massive production of free polyunsaturated fatty acid (PUFA) hydroperoxides dependent on a 9-lipoxygenase (LOX) activity was characterized during the development of leaf necrosis. The process occurred after a lag phase of 12 h, was accompanied by the concomitant increase of 9-LOX activity, and preceded by a transient accumulation of LOX transcripts. Free radical-mediated lipid peroxidation represented 10% of the process. Inhibition and activation of the LOX pathway was shown to inhibit or to activate cell death, and evidence was provided that fatty acid hydroperoxides are able to mimic leaf necrotic symptoms. Within 24 h, about 50% of leaf PUFAs were consumed, chloroplast lipids being the major source of PUFAs. The results minimize the direct participation of active oxygen species from the oxidative burst in membrane lipid peroxidation. They suggest, furthermore, the involvement of lipase activity to provide the free PUFA substrates for LOX. The LOX-dependent peroxidative pathway, responsible for tissue necrosis, appears as being one of the features of hypersensitive programmed cell death.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.