Abstract
The mechanism involved in the inhibition of testosterone (Te) biosynthesis after a sub-chronic exposure to low doses of dimethoate (D) was studied in rat interstitial cells (IC). Expression of COX-2 in IC isolated from D-treated rats increased by 44% over C data, while transcription of StAR decreased by approx. 50% and the expression of this protein was diminished by approximately 40%. PGE(2) and PGF(2alpha) were increased by 61 and 78%, respectively. Te concentration decreased by 49% in IC homogenates. Concomitantly, plasma concentration of LH and FSH both increased. Araquidonate (ARA) and C(22) fatty acyl chains in phospholipids from IC mitochondrial fraction decreased by approx. 30% after D treatment. Protein carbonyls, lipoperoxides and nitrite content increased while alpha-tocopherol and the antioxidant capacity of the soluble cellular fraction decreased significantly. Stimulation with h-CG 10 nM overnight failed to overcome the inhibition caused by D on both Te biosynthesis and 3beta- and 17beta-hydroxysteroid dehydrogenases. Decreased Te biosynthesis may be attributed to (1) inhibition of StAR protein activity due to the stimulation of COX-2 and the overproduction of PGF(2alpha), (2) decreased stimulatory effect of ARA on StAR with a subsequent reduction in the availability of CHO for the androgenic pathway, and/or (3) indirect inhibition of steroidogenic enzymes by a lower transcriptional rate caused by elevated PGF(2alpha). Rofecoxib administration prevents the deleterious effect(s) exerted by D.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.