Abstract

Cannabidiol (CBD) is a non-psychotomimetic compound with strong potential to decrease the psychostimulant's rewarding effect with unclear receptors. Furthermore, as a part of the reward circuit, the hippocampus plays a crucial role in regulating the reward properties of drugs as determined by conditioned place preference (CPP). In the current research, CPP was used to evaluate the role of intra-CA1 microinjection of D1-like dopamine receptor antagonists in CBD's inhibitory effect on the acquisition and expression phases of methamphetamine (METH). Animals were treated by METH (1 mg/kg; sc) in a five-day schedule to induce CPP. To find out the impact of D1-like dopamine receptor antagonist, SCH23390, in the CA1 on the inhibitory influence of CBD on the acquisition of METH, the rats received intra-CA1 administration of SCH23390 (0.25, 1, and 4 µg/0.5 µl) following ICV treatment of CBD (10 µg/5 µl) over conditioning phase of METH. Furthermore, animals were given SCH23390 in the CA1 ensuing ICV microinjection of CBD (50 µg/5 µl) in the expression phase of METH to rule out the influence of SCH23390 on the suppressive effect of CBD on the expression of METH CPP. Intra-CA1 microinjection of SCH23390 abolished CBD's suppressive impact on both METH-induced CPP phases without any side effect on the locomotion. The current research disclosed that CBD inhibited the rewarding characteristic of METH via D1-like dopamine receptors in the CA1 region of the hippocampus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call