Abstract

Plants from two ecotypes of Stellaria longipes, alpine (an open, sunny habitat) and prairie (where adjacent plants provide a shaded habitat), were grown under normal and reduced levels of photosynthetically active radiation (PAR). Growth under low PAR is significantly promoted in both ecotypes. When quantified by the stable isotope dilution method, endogenous gibberellins (GAs) (GA1, GA8, GA20, GA19) were significantly elevated under low PAR in both 'sun' and 'shade' ecotypes, as was GA53 in the shade ecotype. Changes in endogenous GA1 levels were significantly correlated with stem growth during a 28 d growth cycle and with relative growth rate (RGR) for height under low PAR for both ecotypes. Interestingly, under low irradiance PAR, changes (both increases and decreases) in GA8, the 2beta-hydroxylated 'inactive' catabolite of GA1, closely parallel bidaily stem growth changes for both ecotypes. Because the significantly greater stem elongation of both ecotypes in response to low irradiance PAR is associated with significant increases in the endogenous levels of five GAs (GA53, GA19, GA1, GA8) in the early 13-hydroxylation GA biosynthesis pathway (measured at days 7,14 and 21), we conclude that the low irradiance PAR has very likely induced an overall increase in GA biosynthesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call