Abstract

Social behaviors of most mammals are profoundly affected by pheromones. Pheromones are detected by G-protein coupled receptors in the vomeronasal organ (VNO). To investigate the role of G alpha(q/11) in vomeronasal signal transduction pathways, microvillar membranes from murine VNO were prepared. Incubation of such membranes from prepubertal females with adult male urine results in an increase in production of inositol-(1,4,5)-trisphosphate (IP(3)). This stimulation is mimicked by GTP gamma S, blocked by GDP beta S and is tissue specific. Furthermore, use of bacterial toxins such as pertussis that lead to ADP-ribosylation of the G-protein alpha subunits of G(o) and G(i2) do not block the increase in IP(3) levels but U-73122, a PLC inhibitor, blocks the production of IP(3). Studies with monospecific antibodies revealed the presence of three G-proteins, G alpha(o), G alpha(i2) and G alpha(q/11)-related protein, in vomeronasal neurons, concentrated on their microvilli. Our observations indicate that pheromones in male urine act on vomeronasal neurons in the female VNO via a receptor-mediated, G alpha(q/11)-protein-dependent increase in IP(3) levels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call