Abstract

Fusarium verticillioides (teleomorph, Gibberella moniliformis) is an important plant pathogen that causes seedling blight, stalk rot, and ear rot in maize (Zea mays). During infection, F. verticillioides produce fumonsins B1 (FB1) that pose a serious threat to human and animal health. Recent studies showed that Set1, a methyltransferase of H3K4, was responsible for toxin biosynthesis in filamentous fungi. However, to date, the regulation of FvSet1 on FB1 biosynthesis remains unclear. In the current study, we identified only one Set1 ortholog in F. verticillioides (FvSet1) and found that the deletion of FvSET1 led to various defects in fungal growth and pathogenicity. More interestingly, the FvSET1 deletion mutant (ΔFvSet1) showed a significant defect in FB1 biosynthesis and lower expression levels of FUM genes. FvSet1 was also found to play an important role in the responses of F. verticillioides to multiple environmental stresses via regulating the phosphorylation of FvMgv1 and FvHog1. Taken together, these results indicate that FvSet1 plays essential roles in the regulation of FB1 biosynthesis, fungal growth and virulence, as well as various stress responses in F. verticillioides.

Highlights

  • Fusarium verticillioides is an important plant pathogen that causes seedling blight, stalk rot, and ear rot in maize (Zea mays), which is one of the most common diseases of affecting maize worldwide [1,2]

  • In the current study, it was found that FvSet1 is required for activation of FUM gene expression. These findings provide a clearer understanding of regulation of fumonsins B1 (FB1) biosynthesis in F. verticillioides, which will be beneficial to establishing the efficient strategies for

  • These results showed that FvSet1 plays an important role in FB1 production by F. verticillioides via regulation of FUM gene transcription

Read more

Summary

Introduction

Fusarium verticillioides (teleomorph, Gibberella moniliformis) is an important plant pathogen that causes seedling blight, stalk rot, and ear rot in maize (Zea mays), which is one of the most common diseases of affecting maize worldwide [1,2]. During growth in maize, F. verticillioides produces various mycotoxins, such as fumonisins, which are extremely harmful to human and animal health [3,4]. Fumonisins have been shown to play critical roles in the development of maize diseases caused by F. verticillioides [5]. A cluster of 17 FUM genes is known to be responsible for FB1 biosynthesis [6,7]. The molecular mechanisms underlying the regulation of FUM gene transcription in F. verticillioides remains to be elucidated

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call