Abstract

Human recombinant erythropoietin (rHuEPO) induces cytosolic free calcium ([Ca2+]i) mobilization, an activation of mitogen-activated protein (MAP) kinase and DNA synthesis in several tissues. We explored the mechanism of rHuEPO-induced [Ca2+]i mobilization and its role in the activation of MAP kinase and DNA synthesis in vascular smooth muscle cells (VSMC). [Ca2+]i concentrations were measured by fura-2. MAP kinase activation was analyzed using an immunocomplex kinase assay and Western blotting. DNA synthesis was measured as an incorporation of 5-bromo-2'-deoxyuridine. Although addition of rHuEPO significantly increased [Ca2+]i, either in the presence or absence of extracellular Ca2+, the peak level and sustained elevation of [Ca2+]i were significantly reduced in the absence of extracellular Ca2+. Pretreatment with genistein completely blocked the elevation of [Ca2+]i in both conditions. Calphostin C and staurosporine did not completely block the elevation of [Ca2+]i. Staurosporine reduced its peak level in a dose-dependent manner, whereas calphostin C reduced its peak level at concentrations over 1 nmol/l in the presence of extracellular Ca2+. Similar results to those with staurosporine were observed with nifedipine. In the absence of extracellular Ca2+, their dose-dependent effects disappeared even though rHuEPO increased [Ca2+]i. rHuEPO activated MAP kinase and DNA synthesis, both of which were significantly suppressed by the chelation of intracellular Ca2+. These findings suggest that rHuEPO increases [Ca2+]i by both Ca2+ influx and Ca2+ release from intracellular stores. Tyrosine phosphorylation is critical in the regulation of [Ca2+]i, but protein kinase C activation is important only in the regulation of Ca2+ influx. Dihydropyridine-sensitive L-type Ca2+ channels seem to be involved in rHuEPO-induced Ca2+ influx. In addition, increase of [Ca2+]i by rHuEPO stimulates MAP kinase activation and DNA synthesis in VSMC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.