Abstract
This study tested the hypothesis whether endoplasmic reticulum (ER) stress/C/EBP homologous protein (CHOP) signaling is linked with coxsackievirus B3 (CVB3)-induced acute viral myocarditis (AVMC) in vivo. AVMC was induced by intraperitoneal injection of 1000 tissue culture infectious dose (TCID50) of CVB3 virus in mice. In AVMC mouse hearts (n=11), ER stress and CHOP were significantly activated, and were linked to the induction of proapoptotic signaling including reduction of Bcl-2, activation of Bax and caspase 3, compared with the controls (n=10), whereas these could be markedly blocked by ER stress inhibitor tauroursodeoxycholic acid administration (n=11). Moreover, chemical inhibition of ER stress significantly attenuated cardiomyocytes apoptosis, and prevented cardiac troponin I elevation, ameliorated cardiac dysfunction assessed by both hemodynamic and echocardiographic analysis, reduced viral replication, and increased survival rate after CVB3 inoculation. We further discovered that genetic ablation of CHOP (n=10) suppressed cardiac Bcl-2/Bax ratio reduction and caspase 3 activation, and prevented cardiomyotes apoptosis in vivo, compared with wild-type receiving CVB3 inoculation (n=10). Strikingly, CHOP deficiency exhibited dramatic protective effects on cardiac damage, cardiac dysfunction, viral replication, and promoted survival in CVB3-caused AVMC. Our data imply the involvement of ER stress/CHOP signaling in CVB3-induced AVMC via proapoptotic pathways, and provide a novel strategy for AVMC treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.