Abstract

Central neuropeptides play important roles in many physiological and pathophysiological regulation mediated through the autonomic nervous system. In regard to the hepatobiliary system, several neuropeptides act in the brain to regulate bile secretion, hepatic blood flow, and hepatic proliferation. Central injection of corticotropin-releasing factor (CRF) aggravates carbon tetrachloride (CCl4)-induced acute liver injury through the sympathetic nervous pathway in rats. However, still nothing is known about a role of endogenous neuropeptides in the brain in hepatic pathophysiological regulations. Involvement of endogenous CRF in the brain in CCl4-induced acute liver injury was investigated by centrally injecting a CRF receptor antagonist in rats. Male fasted Wistar rats were injected with CRF receptor antagonist alpha-helical CRF-(9-41) (0.125-5 microg) intracisternally just before and 6 h after CCl4 (2 ml/kg) administration, and blood samples were obtained before and 24 h after CCl4 injection for measurement of hepatic enzymes. The liver sample was removed 24 h after CCl4 injection, and histological changes were examined. Intracisternal alpha-helical CRF-(9-41) dose dependently (0.25-2 microg) reduced the elevation of alanine aminotransferase and aspartate aminotransferase levels induced by CCl4. Intracisternal alpha-helical CRF-(9-41) reduced CCl4-induced liver histological changes, such as centrilobular necrosis. The effect of central CRF receptor antagonist on CCl4-induced liver injury was abolished by sympathectomy and 6-hydroxydopamine pretreatment but not by hepatic branch vagotomy or atropine pretreatment. These findings suggest the regulatory role of endogenous CRF in the brain in experimental liver injury in rats.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call