Abstract

Although exogenous administration of beta-endorphin to the arcuate nucleus of hypothalamus (ARC) had been shown to produce antinociception, the role of endogenous beta-endorphin of the ARC in nociceptive processing has not been studied directly. The aim of the present study was to investigate the effect of endogenous beta-endorphin in the ARC on nociception in rats with carrageenan-induced inflammation. The hindpaw withdrawal latency (HWL) to noxious thermal and mechanical stimulation was assessed by the hot-plate test and the Randall Selitto Test. Intra-ARC injection of naloxone had no significant influence on the HWL to thermal and mechanical stimulation in intact rats. The HWL decreased significantly after intra-ARC injection of 1 or 10 μg of naloxone in rats with inflammation, but not with 0.1 μg of naloxone. Furthermore, intra-ARC administration of the selective mu-opioid receptor antagonist beta-funaltrexamine (beta-FNA) decreased the nociceptive response latencies to both stimulation in a dose-dependent manner in rats with inflammation, while intra-ARC administration of the selective delta-opioid receptor antagonist naltrindole or the selective kappa-opioid receptor antagonist nor-binaltorphimine (nor-BNI) showed no influences on the nociceptive response latency. The antiserum against beta-endorphin, administered to the ARC, also dose-dependently reduced the HWL in rats with inflammation. The results indicate that endogenous beta-endorphin in the ARC plays an important role in the endogenous antinociceptive system in rats with inflammation, and that its effect is predominantly mediated by the mu-opioid receptor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call