Abstract

The present study examined whether nicotinic acetylcholine receptors (nAChRs) of the CA1 regions of the dorsal hippocampus and medial septum (MS) are involved in cross state-dependent memory retrieval between WIN55, 212-2 (WIN, a non-selective CB1/CB2 receptor agonist) and nicotine or ethanol. Memory retrieval was measured in one-trial step-down type passive avoidance apparatus in male adult mice. Pre-training intraperitoneal administration of WIN (0.1–1mg/kg) dose-dependently impaired memory retrieval when it was tested 24h later. Pre-test systemic administration of nicotine (0.6 and 0.7mg/kg, s.c.) or ethanol (0.5g/kg, i.p.) improved WIN-induced memory impairment, suggesting a cross state-dependent memory retrieval between the drugs. Pre-test intra-CA1 microinjection of nicotine (1 and 2μg/mouse) before systemic administration of an ineffective dose of nicotine (0.5mg/kg, s.c.) or ethanol (0.25g/kg) significantly reversed WIN-induced memory impairment. Pre-test intra-CA1 microinjection of mecamylamine (1 and 3μg/mouse) inhibited cross state-dependent memory between WIN and nicotine or ethanol. Moreover, pre-test intra-MS microinjection of nicotine (1 and 2μg/mouse) in combination with systemic administration of a lower dose of nicotine (0.5mg/kg), but not ethanol (0.25g/kg), improved memory impairment induced by pre-training administration of WIN. On the other hand, in the animals that received pre-training WIN and pre-test systemic administration of nicotine (0.7mg/kg), but not ethanol (0.5g/kg), pre-test intra-MS microinjection of mecamylamine (1–5μg/mouse) inhibited WIN-nicotine state-dependent memory retrieval. It should be noted that pre-test intra-CA1 or intra-MS microinjection of nicotine or mecamylamine by itself had no effect on memory retrieval and also could not reverse memory impairment induced by pre-training administration of WIN. It can be concluded that WIN and nicotine or WIN and ethanol can induce state-dependent memory retrieval. In addition, our results showed that a cross-state dependency between these drugs may be mediated through a cholinergic nicotinic mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.