Abstract

The calcium channels coupled to noradrenaline release from sympathetic neurones in the rabbit isolated carotid artery were examined. Rings of carotid artery were preloaded with (-)-[(3)H]noradrenaline and the fractional (3)H overflow evoked by electrical-field stimulation was determined by liquid scintillation spectrometry. The N-type Ca(2+) channel blocking agent omega-conotoxin GVIA (3x10(-9)-6x10(-8) M) reduced the stimulation-evoked (3)H overflow. The maximal inhibition was seen with 3x10(-8) M. The maximal reduction was more marked at a low (2 Hz) stimulation frequency than at a high one (30 Hz). Mibefradil (10(-6) M) irreversibly reduced the (3)H overflow evoked by field stimulation (2 Hz). At 30 Hz, the reduction was more marked than at 2 Hz. Mibefradil (3x10(-6)-10(-5) M) enhanced the passive (3)H outflow. The reduction of the stimulation (30 Hz)-evoked (3)H overflow seen with omega-conotoxin GVIA (3x10(-8) M) was enhanced by mibefradil (10(-6) M) and unaffected by nimodipine (10(-5) M) and omega-agatoxin IVA (10(-8) M). We conclude that the stimulation-evoked release of noradrenaline from sympathetic neurones in rabbit carotid artery at a low frequency (2 Hz) is mediated mainly by the N-type calcium channels. At a high frequency (30 Hz), T-type Ca(2+) channels are also involved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.