Abstract
Tienilic acid is reported to be converted into electrophilic metabolites by cytochrome P450 (CYP) in vitro. In vivo, however, the metabolites have not been detected and their effect on liver function is unknown. We previously demonstrated that tienilic acid decreased the GSH level and upregulated genes responsive to oxidative/electrophilic stresses, such as heme oxygenase-1 (Ho-1), glutamate-cysteine ligase modifier subunit (Gclm) and NAD(P)H dehydrogenase quinone 1 (Nqo1), in rat liver, as well as inducing hepatotoxicity by co-treatment with the glutathione biosynthesis inhibitor l-buthionine-(S,R)-sulfoximine (BSO). In this study, for the first time, we identified a glutathione-tienilic acid adduct, a stable conjugate of putative electrophilic metabolites with glutathione (GSH), in the bile of rats given a single oral dose of tienilic acid (300 mg/kg). Furthermore, a tienilic acid-induced decrease in the GSH level and upregulation of Ho-1, Gclm and Nqo1 were completely blocked by pretreatment with the CYP inhibitor 1-aminobenzotriazole (ABT, 66 mg/kg, i.p.). The increase in the serum ALT level and hepatocyte necrosis resulting from the combined dosing of BSO and tienilic acid was prevented by ABT, despite a low hepatic GSH level. These findings suggest that the electrophilic metabolites of tienilic acid produced by CYP induce electrophilic/oxidative stresses in the rat liver and this contributes to the hepatotoxicity of tienilic acid under impaired GSH biosynthesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.