Abstract

Valproic acid (VPA) is a widely prescribed antiepileptic drug, which may cause steatosis in the liver. Oxidative stress is associated with the progression of VPA-induced hepatic steatosis. However, the potential mechanisms are not fully understood. In this study, we demonstrated the involvement of CYP2E1-ROS-CD36/DGAT2 axis in the pathogenesis of VPA-induced hepatic steatosis in vitro and in vivo. First, VPA treatment (500 mg/kg in mice, 5 mM in LO2 cells) induced hepatic steatosis and enhanced reactive oxidative stress (ROS) level, and ROS scavenger, N-acetyl-L-cysteine (NAC, 200 mg/kg in mice, 1 mM in LO2 cells) reversed the changes. Next, we observed the enhanced expression and enzymatic activity of cytochrome P450 2E1 (CYP2E1) in VPA-treated mice and LO2 cells. Importantly, VPA-induced ROS accumulation and hepatic steatosis were attenuated when CYP2E1 was inhibited using CYP2E1 inhibitor, diallyl sulfide (DAS, 100 mg/kg in mice, 1 mM in LO2 cells) or in CYP2E1-knockdown cell line, suggesting that CYP2E1 plays a potential role in ROS production following hepatic steatosis. Furthermore, gene expression analysis showed that the mRNA levels of cluster of differentiation 36 (CD36), a fatty acid translocase protein and distinct diacylglycerol acyltransferase 2 (DGAT2) were significantly upregulated in mice and LO2 cells after VPA treatment, while the change was alleviated by NAC and DAS. Meanwhile, time course experiments demonstrated that the increase of CYP2E1 level occurred earlier than that of ROS, CD36 and DGAT2, and ROS generation preceded the onset of hepatic steatosis. Taken together, VPA treatment enhances the expression and enzymatic activity of CYP2E1, which promotes ROS production and then causes CD36 and DGAT2 overproduction and hepatic steatosis in mice and LO2 cells, which provides a novel insight into VPA-induced hepatic steatosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call