Abstract
Quinomycin antibiotics, represented by echinomycin, are an important class of antitumor antibiotics. We have recently succeeded in identification of biosynthetic gene clusters of echinomycin and SW-163D, and have achieved heterologous production of echinomycin in Escherichia coli. In addition, we have engineered echinomycin non-ribosomal peptide synthetase to generate echinomycin derivatives. However, the biosynthetic pathways of intercalative chromophores quinoxaline-2-carboxylic acid (QXC) and 3-hydroxyquinaldic acid (HQA), which are important for biological activity, were not fully elucidated. Here, we report experiments involving incorporation of a putative advanced precursor, (2S, 3R)-[6'-(2)H]-3-hydroxy-L-kynurenine, and functional analysis of the enzymes Swb1 and Swb2 responsible for late-stage biosynthesis of HQA. On the basis of these experimental results, we propose biosynthetic pathways for both QXC and HQA through the common intermediate 3-hydroxy-L-kynurenine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.