Abstract

The existence of Cl- channels in vascular smooth muscle cells (VSMCs) has been increasingly investigated, but the biological functions are not yet clear. Insulin-like growth factor (IGF)-I affects proliferation and migration of VSMCs, and dysregulation of this axis may be involved in atherogenesis and intimal hyperplasia. We examined the effects of Cl- channel blockers on IGF-I-induced proliferation in porcine VSMCs. The siRNA approach was used to support the role of ClC-2, a member of the volume-regulated Cl- channel family, in cell proliferation of VSMCs. The IGF-I-induced VSMC proliferation was significantly suppressed by the Cl- channel blockers NPPB and IAA94 but not by DIDS. IGF-I-induced cell proliferation parallels a significant increase in the endogenous expression of ClC-2 mRNA and protein. Inhibitors of PI3-kinase, LY294002 and wortmannin, significantly attenuated the IGF-I-upregulated ClC-2 expression and cell proliferation. We observed ClC-2-like Cl- current, and this current was augmented by IGF-I. SiRNA specifically targeted to ClC-2 abolished IGF-I-induced cell proliferation. Our data demonstrate that ClC-2 plays a role in IGF-1-induced regulation of VSMC proliferation in cardiovascular diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.