Abstract

BACKGROUND Cannabinoid (CB) receptors are involved in the regulation of gastrointestinal (GI) motility under physiological and pathophysiological conditions. We aimed to characterize the possible influence of CB(1) and CB(2) receptors on motility impairment in a model of septic ileus. METHODS Lipopolysaccharide (LPS) injections were used to mimic pathophysiological features of septic ileus. Spontaneous jejunal myoelectrical activity was measured in rats in vivo, and upper GI transit was measured in vivo by gavaging of a charcoal marker into the stomach of mice, in absence or presence of LPS, and CB(1) and CB(2) receptor agonists and antagonists. Tumour necrosis factor (TNF)-alpha and interleukin (IL)-6 levels were measured using enzyme-linked immunosorbent assay. Histology was performed with haematoxylin-eosin staining. KEY RESULTS Lipopolysaccharide treatment significantly reduced amplitude and frequency of myoelectric spiking activity and GI transit in vivo in a dose-dependent manner. TNF-alpha and IL-6 were increased in LPS-treated animals and histology showed oedema and cell infiltration. Both, the CB(1) agonist HU210 and the CB(2) agonist JWH133 reduced myoelectrical activity whereas the CB(1) antagonist AM251 caused an increase of myoelectrical activity. Pretreatment with AM251 or AM630 prevented against LPS-induced reduction of myoelectrical activity, and also against the delay of GI transit during septic ileus in vivo. CONCLUSIONS & INFERENCES The LPS model of septic ileus impairs jejunal myoelectrical activity and delays GI transit in vivo. Antagonists at the CB(1) receptor or the CB(2) receptor prevent the delay of GI transit and thus may be powerful tools in the future treatment of septic ileus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.