Abstract

Rapamycin-coated stents in coronary artery lesions have recently been shown to be effective in inhibiting neointimal formation. However, little is known about the effects of rapamycin on mitogen-activated protein kinase (MAPK), which is an important signal for neointimal formation. Therefore, we examined the effects of rapamycin on MAPK and transcriptional factors in cultured human coronary artery smooth muscle cells (CASMC) and in balloon-injured rat carotid arteries. Activation of ERK, JNK, p38MAPK, AP-1, and NF-kB in coronary artery smooth muscle cells was increased by 2% fetal bovine serum. Ten nmol/L of rapamycin prevented the activation of JNK, p38MAPK, AP-1, and NF-kB (65%, 65%, 67%, and 26% respectively, P<0.01). In an in vivo study, remarkable neointimal formation was observed 14 days after injury. Coating Pluronic gel with 20 and 50 mug rapamycin around the injured artery significantly decreased the intimal area/medial area ratio, compared with vehicle (0.75 vs. 1.2, P<0.01). Rapamycin prevented the increase in activation of JNK, p38MAPK, AP-1, and NF-kB in injured artery (42%, 70%, 75%, and 60% respectively, P<0.05). Neointimal formation after balloon injury is inhibited by rapamycin, which is partially mediated by inhibition of JNK and p38MAPK, followed by AP-1 and NF-kB.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.