Abstract
Methamphetamine (METH) is a widely abused illicit psychoactive drug. Our previous study has shown that CCAAT-enhancer binding protein β (C/EBPβ) is an important regulator in METH-induced neuronal autophagy and apoptosis. However, the detailed molecular mechanisms underlying this process remain poorly understood. Previous studies have demonstrated that DNA damage-inducible transcript 4 (DDIT4), Trib3 (tribbles pseudo kinase 3), alpha-synuclein (α-syn) are involved in METH-induced dopaminergic neurotoxicity. We hypothesized that C/EBPβ is involved in METH-induced DDIT4-mediated neuronal autophagy and Trib3-mediated neuronal apoptosis.We tested our hypothesis by examining the effects of silencing C/EBPβ, DDIT4, Trib3 or α-syn with small interfering ribonucleic acid (siRNA) on METH-induced autophagy and apoptosis in the human neuroblastoma SH-SY5Y cells. We also measured the levels of phosphorylated tuberous sclerosis complex 2 (TSC2) protein and Parkin protein level in SH-SY5Y cells. Furthermore, we demonstrated the effect of silencing C/EBPβ on METH-caused neurotoxicity in the striatum of rats by injecting LV-shC/EBPβ lentivirus using a stereotaxic positioning system. The results showed that METH exposure increased C/EBPβ, DDIT4 protein expression. Elevated DDIT4 expression raised up p-TSC2/TSC2 protein expression ratio, inhibited mTOR signaling pathway, activating cell autophagy. We also found that METH exposure increased the expression of Trib3, α-syn, decreased the Parkin protein expression. Lowering levels of Parkin raised up α-syn expression, which initiated mitochondrial apoptosis by down-regulating anti-apoptotic Bcl-2, followed by up-regulation of pro-apoptotic Bax, resulting in translocation of cytochrome c (cyto c), an apoptogenic factor, from the mitochondria to cytoplasm and activation of caspase-dependent pathways. These findings were supported by data showing METH-induced autophagy and apoptosis was significantly inhibited by silencing C/EBPβ, DDIT4, Trib3 or α-syn, or by Parkin over-expression. Based on the present data, a novel of mechanism on METH-induced cell toxicity is proposed, METH exposure increased C/EBPβ protein expression, triggered DDIT4/TSC2/mTOR signaling pathway, and evoked Trib3/Parkin/α-syn-related mitochondrial apoptotic signaling pathway. Collectively, these results suggest that C/EBPβ plays an important role in METH-triggered autophagy and apoptosis and it may be a potential target for therapeutics in METH-caused neurotoxicity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.