Abstract

Inhibition of a Zn(2+)-glycerophosphocholine cholinephosphodiesterase by thiols or tellurites were examined mechanistically. Inactivation of the phosphodiesterase by thio-carboxylates, which was due to the removal of Zn2+ in the catalytic site, was enhanced by introduction of an amino group in the structure of thiols, suggesting the presence of an anionic site adjacent to a Zn2+ site. In support of the suggestion, it was found that thiols, associable with both a Zn2+ site and an anionic site, were more potent reversible inhibitors; dimethylaminoethanethiol (Ki, 17 microM), diethylaminoethanethiol (Ki, 1.2 microM) and thiocholine (Ki, 2.6 microM). Meanwhile, the inhibition of the phosphodiesterase by tellurites is ascribed to the binding of tellurite anions to a Zn2+ site, based on the protective action of tellurite anions against the inactivation of the enzyme by EDTA. Moreover, the inhibition of the phosphodiesterase by tellurites was prevented by phosphate ions, which expressed the protective effect against EDTA inactivation. In further support, it was observed that tellurite and thiocholine appeared to interact with active site in an additive manner, in contrast to a synergistic action between tellurites and quaternary ammonium compounds such as acetylcholine or choline.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.