Abstract

Aucubin, an iridoid glycoside found in several plants, such as Eucommia ulmoide and Rehmannia, has various pharmacological effects. Bone formation is a complex process in which osteoblast differentiation plays an important role. This study aimed to investigate the promotion effects of aucubin on osteoblast differentiation in MG63 cells, a human osteoblast-like cell line. Aucubin not only improved osteoblast differentiation, as shown by enhanced ALP (alkaline phosphatase) concentration and mineralization in cells, but increased the expression of various cytokines, including collagen I, osteocalcin, osteopontin, integrin β1, and Osterix. Aucubin strongly enhanced the levels of BMP2 (bone morphogenetic proteins-2) in MG63 cells, which play a central role during osteoblast differentiation. Further data show that aucubin exposure after 1 day, 7 days, and 14 days enhanced the expression of Smad1, 5, and 8, and the phosphoresced levels of MAPKs (mitogen-activated protein kinases) family Erk (extracellular signal–regulated kinases), JNK (c-Jun-NH2-terminal kinases), P38, and Akt (serine/threonine protein kinase)/mTOR (mammalian target of rapamycin)/p70s6k in MG63 cells. This study shows the improved effects of aucubin on osteoblast differentiation in MG63 cells, related to the signaling of BMP2-mediated Smads (drosophila mothers against decapentaplegic proteins), MAPKs, and Akt/mTOR/p70S6K. This study indicates the potential of aucubin for osteoporosis treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.