Abstract

The constitutive expressor of pathogenesis-related genes 5 (CPR5) plays a role in pathogen defence responses, programmed cell death, cell wall biogenesis, seed generation and senescence regulation in plants. Here, we investigated the functional characteristics of CPR5 to long-term heat stress in Arabidopsis with different genotypes: wild type (WT), cpr5 mutant and cpr5/CPR5 complementary transgenic plant. The cpr5 mutant showed increased susceptibility to long-term heat stress, displaying significant decreases in hypocotyl elongation, seedling and inflorescence survival, membrane integrity and photosystem II activity (Fv/Fm) during heat stress. However, the thermotolerance was recovered when cpr5 mutant was transformed with a CPR5 gene. H2O2 accumulation and lipid peroxidation were lower in cpr5/CPR5 plants and WT than in cpr5 mutants after exposure to 36 °C for 5 days. The alleviated oxidative damage was associated with increased activities of superoxide dismutase, catalase, and ascorbate peroxidase. Furthermore, the induced expression of HSP17.6A-CI, HSP101 and HSP70B under long-term heat stress was more substantial in cpr5/CPR5 plants and WT than in cpr5 mutants. These findings suggest that CPR5 plays an important role in thermotolerance of Arabidopsis by regulating the activities of antioxidant enzymes and the expressions of heat shock protein genes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call