Abstract

Acrolein is a neurotoxin produced through lipid peroxidation in the brain affected by ischemic stroke, which results in neuronal cell injury and inflammation. However the mechanism underlying acrolein-induced brain inflammation remains unclear. Therefore we examined how acrolein leads to astrocytic inflammation. It was found that acrolein increased the levels of NLRP3 and cleaved caspase-1, which led to the maturation of interleukin-1β (IL-1β). ELISA assay results, which showed that acrolein increased the secreted IL-1β, further supported acrolein-induced astrocytic inflammation. Acrolein increased ADAM10 protein levels and the cleavage of N-cadherin. The ADAM10 inhibitor, GI 254023X blocked N-cadherin cleavage by acrolein, suggesting that ADAM10 is an upstream of N-cadherin. Furthermore, we found that acrolein activated p38 MAPK and NF-κB p65, while pretreatment with p38 MAPK inhibitor, SB203580 and GI 254023X inhibited NF-κB p65 activation and NLRP3 inflammasome. This suggests that p38 MAPK mediates the activation of NF-κB p65, which is associated with NLRP3 expression. Finally, we showed that acrolein induced cell toxicity and decrease of EAAT1 expression, suggesting that acrolein may induce a loss of glutamate uptake function. In conclusion, we demonstrate that acrolein induces astrocytic inflammation through NLRP3 inflammasome, which is regulated by ADAM10 and attributed to p38 MAPK-activated NF-κB p65 activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call