Abstract

The biogenic amine dopamine (DA) regulates various physiological and behavioral processes in insects through binding with specific receptors. Three types of typical receptors are known to date. Previously, we achieved functional and pharmacological characterization of the three DA receptors in the silkworm Bombyx mori (BmDopR1–3). BmDopR1 and BmDopR2 are functionally classified as D1-like DA receptors, and BmDopR3 as D2-like. The present pharmacological data and our previous studies suggested that bromocriptine (Bro), which acts as an agonist on the DA D2 receptors and also interacts with various serotonin and adrenergic receptors in vertebrates, is an agonist that also acts specifically on BmDopR3, with little effect on BmDopR1 and BmDopR2 in silkworms. Exploiting this subtype specificity of Bro, to offer clues on the involvement of DA and its receptors in silkworm feeding behavior, Bro was injected into fifth instar larvae and subsequent feeding and related behaviors (feeding amount, excretion amount, mandibular movement, and feeding behavior observation) were quantitatively evaluated. Bro injection increased feeding and excretion amounts but did not affect mandibular chewing speed. Visual observation of feeding behavior for 1 h revealed the prolongation of feeding and related moving time in Bro-injected larvae. Collectively, these results suggest that Bro directly acted on BmDopR3 as an agonist and promoted feeding and related behaviors in silkworm larvae.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.