Abstract

The nature of the suppression of platelet-derived growth factor (PDGF) receptor autophosphorylation in ras-transformed NIH 3T3 fibroblasts was investigated. The PDGF receptor from ras-transformed cells that had been purified by wheatgerm-lectin affinity chromatography displayed normal PDGF-induced autophosphorylation, indicating that the receptor is not irreversibly modified. Various phosphotyrosine-protein-phosphatase inhibitors did not reverse the inhibition of PDGF-receptor kinase in crude membrane preparations from ras-transformed cells. However, treatment of intact ras-transformed cells both with 2 mM sodium orthovanadate and with 20 microM phenylarsine oxide restored PDGF-receptor tyrosine-kinase activity to a level similar to that observed in normal cells. Direct measurement of the phosphatase activities in crude cellular fractions revealed a 2.5-fold higher membrane-associated phosphotyrosine-protein-phosphatase activity in ras-transformed cells, whereas phosphoserine-protein-phosphatase activity remained unchanged between the cell lines. These data suggest that the suppression of the PDGF-receptor tyrosine-kinase activity in ras-transformed cells is mediated via an inhibitory component, distinct from the receptor, that may be positively regulated by the dephosphorylation of tyrosine residue(s).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call