Abstract

We present a measurement of the time-resolved photoelectron kinetic energy spectrum of ethylene using 156 nm and 260 nm laser pulses. The 156 nm pulse first excites ethylene to the (1)B1u (ππ(∗)) electronic state where 260 nm light photoionizes the system to probe the relaxation dynamics with sub-30 fs resolution. Recent ab initio calculations by Mori et al. [J. Phys. Chem. A 116, 2808-2818 (2012)] have predicted an ultrafast population transfer from the initially excited state to a low-lying Rydberg state during the relaxation of photoexcited ethylene. The measured photoelectron kinetic energy spectrum reveals wave packet motion on the valence state and shows indications that the low-lying π3s Rydberg state is indeed transiently populated via internal conversion following excitation to the ππ(∗) state, supporting the theoretical predictions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.