Abstract
The soluble subcellular fraction of a chlB mutant contains an inactive precursor form of the molybdoenzyme nitrate reductase, which can be activated by the addition to the soluble fraction of protein FA, which is thought to be the active product of the chlB locus. Dialysis or desalting of the chlB soluble fraction leads to the loss of nitrate reductase activation, indicating that some low-molecular-weight material is required for the activation. The protein FA-dependent activation of nitrate reductase can be restored to the desalted chlB soluble fraction by the addition of a clarified extract obtained after heating the chlB soluble fraction at 100 degrees C for 8 min. The heat-stable substance present in this preparation has a molecular weight of approximately 1,000. This substance is distinct from the active molybdenum cofactor since its activity is unimpaired in heat-treated extracts prepared from the organism grown in the presence of tungstate, which leads to loss of cofactor activity. Mutations at the chlA or chlE locus, which are required for molybdenum cofactor biosynthesis, similarly do not affect the activity of the heat-treated extract in the in vitro activation process. Moreover, the active material can be separated from the molybdenum cofactor activity by gel filtration. None of the other known pleiotropic chlorate resistance loci (chlD, chlG) are required for the expression of its activity. Magnesium ATP appears to have a role in the formation of the active substance. We conclude that a low-molecular-weight substance, distinct from the active molybdenum cofactor, is required to bestow activity on the molybdoenzyme nitrate reductase during its biosynthesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.