Abstract
The previously described high-molecular-weight polyprotein major translational product of the Snyder-Theilen strain of feline sarcoma virus (FeSV) was shown to possess protein kinase activity with specificity for tyrosine acceptor sites. Cells transformed by Snyder-Theilen FeSV exhibited constitutively elevated levels of phosphotyrosine and a concomitant reduction in epidermal growth factor (EGF) binding sites. By endpoint cloning in microtiter plates, a number of transformation-defective (tf) mutants of the Snyder-Theilen strain of FeSV were isolated. Mink cells nonproductively infected by such mutants were morphologically nontransformed, failed to grow in soft agar, bound EGF as efficiently as control mink cells, and lacked rescuable transforming virus. Although the level of expression of the major viral polyprotein translational product in td mutant-infected clones was comparable to that of wild-type (wt) transformants, the polyprotein in mutant clones lacked detectable protein kinase activity and total cellular phosphotyrosine levels were not elevated significantly above control values. Of a large number of wt Snyder-Theilen FeSV-transformed mink cell clones isolated, the majority were found to revert to a nontransformed morphology upon continuous passage in cell culture. Such nontransformed variants, as well as a Gardner FeSV-transformed mink cell revertant, lacked detectable polyprotein expression and exhibited levels of phosphotyrosine and EGF binding similar to those of control mink cells. These findings provide strong evidence favoring the involvement of the Snyder-Theilen FeSV-encoded high-molecular-weight polyprotein and its associated tyrosine-specific protein kinase activity in transformation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.