Abstract
Yeast stress tolerance is an important characteristic that is studied widely, not only regarding its fundamental insights but also for its applications within the biotechnological industry. Here, we investigated the function of two phosphatase encoding genes, DOG1 and DOG2, which are induced as part of the general stress response pathway, but their natural substrate in the cells remains unclear. They are known to dephosphorylate the non-natural substrate 2-deoxyglucose-6-phosphate. Here, we show that overexpression of these genes overcomes the osmosensitive phenotype of mutants that are unable to produce glycerol. However, in these overexpression strains, very little glycerol is produced indicating that the Dog enzymes do not seem to be involved in a previously predicted alternative pathway for glycerol production. Our work shows that overexpression of the DOG genes may improve osmotic and ionic stress tolerance in yeast.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.