Abstract

The Cpx and sigma(E) regulons help maintain outer membrane integrity; the Cpx pathway monitors the biogenesis of cell surface structures, such as pili, while the sigma(E) pathway monitors the biogenesis of beta-barrel outer membrane proteins (OMPs). In this study we revealed the importance of the Cpx regulon in the event of beta-barrel OMP mis-assembly, by utilizing mutants expressing either a defective beta-barrel OMP assembly machinery (Bam) or assembly defective beta-barrel OMPs. Analysis of specific mRNAs showed that Delta cpxR bam double mutants failed to induce degP expression beyond the wild type level, despite activation of the sigma(E) pathway. The synthetic conditional lethal phenotype of Delta cpxR in mutant Bam or beta-barrel OMP backgrounds was reversed by wild type DegP expressed from a heterologous plasmid promoter. Consistent with the involvement of the Cpx regulon in the event of aberrant beta-barrel OMP assembly, the expression of cpxP, the archetypal member of the cpx regulon, was upregulated in defective Bam backgrounds or in cells expressing a single assembly-defective beta-barrel OMP species. Together, these results showed that both the Cpx and sigma(E) regulons are required to reduce envelope stress caused by aberrant beta-barrel OMP assembly, with the Cpx regulon principally contributing by controlling degP expression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.