Abstract
The generation of hydrogen through photocatalysis is a fascinating technology for addressing environmental concerns and the energy crisis. Nevertheless, the quest for cost-effective, stable, and efficient photocatalysts in the realm of energy conversion remains a significant challenge. Herein, we designed novel InVO4/Ti3C2 MXene (IVTC) heterostructures by employing acid etching to produce Ti3C2 MXene with an accordion-like morphology, using the hydrothermal technique for the production of orthorhombic InVO4 nanoparticles (NPs), and integrating them through a self-assembly approach. Both field-emission scanning electron microscopy and HRTEM analyses revealed a consistent distribution of InVO4 NPs with an average size of 43.4 nm on both surfaces and between the sheets of Ti3C2 MXene. The intimate interface between the Ti3C2 MXene nanosheet and InVO4 suppressed carrier recombination and promoted charge transfer, thereby boosting photocatalytic H2 production. Under visible light exposure, the rate of hydrogen evolution is enhanced in IVTC heterostructures containing an optimized 10% loading of InVO4, exhibiting over a 3-fold increase compared to pristine InVO4 NPs, maintaining efficiency across four cycles. This research presents a promising method for designing and creating high-efficiency heterostructures possessing excellent visible-light-driven photocatalytic activity for H2 evolution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.