Abstract

Adult neurogenesis plays critical roles in maintaining brain homeostasis and responding to neurogenic insults. However, the adult mammalian spinal cord lacks an intrinsic capacity for neurogenesis. Here we show that spinal cord injury (SCI) unveils a latent neurogenic potential of NG2+ glial cells, which can be exploited to produce new neurons and promote functional recovery after SCI. Although endogenous SOX2 is required for SCI-induced transient reprogramming, ectopic SOX2 expression is necessary and sufficient to unleash the full neurogenic potential of NG2 glia. Ectopic SOX2-induced neurogenesis proceeds through an expandable ASCL1+ progenitor stage and generates excitatory and inhibitory propriospinal neurons, which make synaptic connections with ascending and descending spinal pathways. Importantly, SOX2-mediated reprogramming of NG2 glia reduces glial scarring and promotes functional recovery after SCI. These results reveal a latent neurogenic potential of somatic glial cells, which can be leveraged for regenerative medicine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.