Abstract

Although mesenchymal stem cells (MSCs) have been demonstrated to possess a tumor‑homing feature, their tropism to liver tumors has not been delineated in a visible manner. The aim of the present study was to evaluate the tumor‑homing capacity of MSCs and to investigate the spatial and temporal distributions of MSCs in liver tumors using magnetic resonance imaging (MRI). MSCs were colabeled with superparamagnetic iron oxide (SPIO) particles and 4',6‑diamidino‑2‑phenylindole (DAPI), and then transplanted into rabbits with VX2 liver tumors through intravenous injections. The rabbits were subjected to MRI before and at 3, 7 and 14days after cell transplantation using a clinical 1.5‑T MRI system. Immediately after the MRI examination, histological analyses were performed using fluorescence and Prussian blue staining. At 3days after injection with labeled MSCs, heterogeneous hypointensity was detected on the MRI images of the tumor. At 7days after transplantation, the tumor exhibited anisointense MRI signal, whereas a hypointense ring was detected at the border of the tumor. At 14days after transplantation, the MRI signal recovered the hyperintensity. As demonstrated in the histological analyses, the distribution of the iron particles visualized with Prussian blue staining was consistent with the DAPI‑stained bright fluorescent nuclei, and the particles corresponded to the hypointense region on the MR images. Thus, systemically administered MSCs could localize to liver tumors with high specificity and possessed a migration feature with active tumor growth. These results demonstrated that the targeting and distribution of the magnetically labeled stem cells in the tumor could be tracked for 7days invivo using a clinical 1.5‑T MRI scanner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.