Abstract
PurposeTo compare the debonding and fracture force of different CAD/CAM composite crowns with respect to the influence of water storage (0d vs. 90d/37 °C) and types of cementation (adhesive vs. self-adhesive). MethodsExtracted human molars were prepared with a worst-case preparation scenario providing a nonretentive design (height ~4 mm; angle ~15°) and reduced fitting (250 µm). After digitalization, 72 crowns (n = 8 per group; circular wall thickness 1.5 mm / occlusal thickness ~2.5 mm) were milled from the composites (CS, LU), one experimental composite (EX), a resin-infiltrated ceramic (VE), and a feldspar ceramic reference (VM). The crowns were adhesively bonded (Scotchbond Universal + Rely X Ultimate, 3M), and two groups (EX, VE) were additionally cemented with a self-adhesive cement (RelyX Unicem, 3M). After 90-d water storage, thermal cycling and mechanical loading (TCML) were performed. Restorations, which failed during storage or TCML, were analyzed using scanning electron microscopy, and surviving restorations were loaded to fracture. To evaluate storage effects, two materials (EX, LU) were investigated without water storage. ResultsCS (7×) and LU (2×) exhibited debonding during 90-d storage. LU (5×) debonded during TCML. Cement remained on the inner sides of the crowns in all cases. EX and VE survived storage and TCML without failure or debonding. Two specimens of VM exhibited cracks after TCML. Fracture forces varied between 720 N and 2155 N. Solely the results between VE and VM were not significantly different (p = 0.204). Debonding effects due to water storage were material dependent. Fracture forces in tendency (p > 0.117) were higher for self-adhesive cementation. ConclusionsDebonding and stability of CAD/CAM crowns were material dependent. Water storage affected debonding, and cementation marginally influenced performance and fracture force.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Mechanical Behavior of Biomedical Materials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.