Abstract

The current study details the green synthesis of zinc oxide nanoparticles utilizing the aqueous leaf extract of Ipomoea aquatica. A straightforward, economically viable, and consistent green synthesis technique was devised for producing these nanoparticles. The resulting Zinc oxide nanoparticles underwent comprehensive characterization through XRD, FESEM, EDS, FT-IR, TGA, and DSC analyses. Additionally, the study encompassed In- vitro and In- vivo assessments, including examinations of anti-microbial effects, hemocompatibility, anti-inflammatory responses, oral toxicity in mice, and fish toxicity using the Danio rerio model. The toxicological evaluations were done using the Danio rerio model (fish toxicity) and oral toxicity studies on mice. The particle size and zeta potential were verified using a DLS study, while EDS analyses validated the elemental composition of the nanoparticles. The crystalline nature of the nanoparticles was confirmed through distinctive peaks in the XRD pattern. The HR-TEM results confirmed the particle size range obtained by the Light scattering technique. Encouraging results were observed across the range of pharmacological activities conducted, demonstrating positive outcomes in terms of anti-microbial, hemocompatibility, anti-inflammatory attributes, In-vitro cytotoxicity, oral toxicity, and fish toxicity. This study not only showcased an eco-friendly and cost-efficient method for synthesizing Zinc oxide nanoparticles but also highlighted their potential implications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.