Abstract

Background & Objectives : The aim of the study was to evaluate the flexural strength and flexural modulus o f five commercially available composites namely Fetric Ceram (Hybrid), Filtek P-60 (Packable), Dyract (Compomer), Filtek Flow (Flowable) and Admira (Ormocer). after aging in water. Methodology: 20 specimens were made using each of the 5 composite materials . and randomly divided into two subgroups containing 10 specimens each. Specimens were stored in distilled water (Subgroup A: 7 days & Subgroup 13: 30 days). Thermocycling of all the specimens was done for 5000 cycles, to simulate the oral conditions. Flexural strength and modulus of the specimens were assessed in a Universal Testing Machine. Data was analyzed using one way ANOVA /Students t-test at a significance level of 0.05. Results: Results have shown that highest flexural strength and modulus was seen for Group I1 (Filtek P-­60) and Group I (Tetric Ceram), followed by Group V (Admira). Group Ill (Dyract) showed lowest flexural strength and Group IV (Filtek flow) showed lowest flexural modulus. After aging in water all the groups showed decreased flexural strength, except for Group IV (Filtek Flow), for which the strength increased. Flexural modulus of all the composites tested increased slightly after aging in water, but was not significant. Interpretation & Conclusion: The effect of aging in water on flexural strength and modulus was material dependent. A significant decrease in flexural strength was observed for all the composites, except for Group IV (Filtek flow), after aging in water. Aging had no significant effect on the flexural modulus of any of the composites tested.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call