Abstract

Aim There are a number of theories on which organisms provide the most interesting bioactive metabolites. In this study, we discuss the biochemical activities of the marine-derived endophyte Emericella nidulans, isolated from the Egyptian Red Sea algae. Methods The fungus E. nidulans was isolated as an endophyte from the Egyptian Red Sea brown alga Turbinaria elatensis. The fungus was identified by a morphological method and 18S rDNA sequence comparison. Chemical constituents were isolated using chromatographic techniques. Results and conclusion Cultivation of this fungus in Czapek’s peptone media led to the isolation of five known metabolites: sterigmatocystin (1), emericellin (2), cordycepin (3), ergosterol peroxide (4), and myristic acid (5) from the ethyl acetate extract of the culture broth. The structures were elucidated on the basis of NMR spectroscopic analysis and mass spectrometry. The ethyl acetate extract and the isolated compounds were tested for antimicrobial properties, activity against cancer cell lines, and inhibition of the hepatitis C virus protease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call