Abstract

Based on previous finding showing 2,3,6,11-tetrahydro-1H-azocino[4,5-b]indole as suitable scaffold of novel inhibitors of acetylcholinesterase (AChE), a main target of drugs for the treatment of Alzheimer's disease and related dementias, herein we investigated diverse newly and previously synthesized β-enamino esters (and ketones) derivatives of 1,4,7,8-tetrahydroazocines (and some azonines) fused with benzene, 1H-indole, 4H-chromen-4-one and pyrimidin-4(3H)-one. Twenty derivatives of diversely annelated eight-to-nine-membered azaheterocyclic ring, prepared through domino reaction of the respective tetrahydropyridine and azepine with activated alkynes, were assayed for the inhibitory activity against AChE and butyrylcholinesterase (BChE). As a major outcome, compound 7c, an alkylamino derivative of tetrahydropyrimido[4,5-d]azocine, was found to be a highly potent BChE-selective inhibitor, which showed a noncompetitive/mixed-type inhibition mechanism against human BChE with single digit nanomolar inhibition constant (Ki = 7.8 ± 0.2 nM). The four-order magnitude BChE-selectivity of 7c clearly reflects the effect of lipophilicity upon binding to the BChE binding cavity. The ChEs’ inhibition data, interpreted by chemoinformatic tools and an in-depth in-silico study (molecular docking combined with molecular dynamics calculations), not only highlighted key structural factors enhancing inhibition potency and selectivity toward BChE, but also shed light on subtle differences distinguishing the binding sites of equine BChE from the recombinant human BChE. Compound 7c inhibited P-glycoprotein with IC50 of 0.27 μM, which may support its ability to permeate blood-brain barrier, and proved to be no cytotoxic in human liver cancer cell line (HepG2) at the BChE bioactive concentrations. Overall, the biological profile allows us to envision 7c as a promising template to improve design and development of BChE-selective ligands of pharmaceutical interest, including inhibitors and fluorogenic probes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.