Abstract

The zein solutions containing different concentrations of cuminaldehyde (5%, 10%, and 20%, w/w) were electrospun. The morphology and average diameter of fibers were evaluated by scanning electron microscopy and the optimized fiber (20% cuminaldehyde) was chosen. Proton nuclear magnetic resonance spectroscopy and encapsulation efficiency showed the presence and desirable content of loaded cuminaldehyde in cuminaldehyde-loaded zein fiber, respectively. Chemical evaluations using Fourier transform infrared spectroscopy, X-ray diffraction, and confocal Raman spectroscopy assigned the domination of helical domains, amorphousness, and acceptive distribution to the resultant fiber, respectively. Modeling of Z19 and Z22 as well as molecular docking confirmed the results of chemical evaluations. Furthermore, the enhanced onset thermostability of cuminaldehyde (from 80 to 99 °C) was observed after the incorporation into zein fiber. Finally, the diffusion controlled-release of cuminaldehyde from a hydrophobic surface, its low-risk toxicity, and potent antibacterial activity of cuminaldehyde-loaded zein fiber against Staphylococcus aureus and Escherichia coli suggested its potentiality to be used in food and therapeutic applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call