Abstract

The β-lactamase inhibitor relebactam inactivates class A β-lactamases, including KPC-type carbapenemases, and class C β-lactamases. Relebactam combined with imipenem is in clinical development for several indications, including hospital-acquired and ventilator-associated pneumonia. Employing CLSI-defined broth microdilution methodology, we evaluated the activities of imipenem-relebactam (using imipenem MIC breakpoints) and comparators against non-Proteeae Enterobacteriaceae (n=853) and Pseudomonas aeruginosa (n=598) isolated from lower respiratory tract infection samples in 20 hospital laboratories in the United States participating in the 2015 SMART (Study for Monitoring Antimicrobial Resistance Trends) global surveillance program. Imipenem-relebactam and imipenem susceptibilities were 97.2% and 91.6% for non-Proteeae Enterobacteriaceae and 93.1% and 68.1% for P. aeruginosa. Relebactam restored imipenem susceptibility to 66.7% and 78.5% of imipenem-non-susceptible non-Proteeae Enterobacteriaceae isolates (n=72) and P. aeruginosa (n=191), respectively. Further development of imipenem-relebactam as therapy for lower respiratory tract infections is warranted given relebactam's ability to restore activity to imipenem against non-susceptible non-Proteeae Enterobacteriaceae and P. aeruginosa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.