Abstract

Important criteria for the widespread usage of DC electricity are the overall energy efficiency and cost of delivering electricity from the point of generation to the point of usage. Wide bandgap (WBG) semiconductor power switching devices, including those made from Silicon Carbide (SiC) and Gallium Nitride (GaN) semiconductors, offer unprecedented advantages over conventional silicon devices in terms of significantly increased energy efficiency and superior thermal performance. For example, for power conversion applications requiring power switches rated below 900V, commercial GaN lateral power transistors offer more than 5% higher energy efficiency with superior load regulation, especially for point-of-load (PoL) converters and wireless energy transfer devices. For higher voltage applications, commercially available vertical SiC power diodes and MOSFETs provide increased energy efficiency than feasible with silicon power MOSFETs and IGBTs, especially for certain low- and medium-power inverters and DC-DC converters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call