Abstract

Chemical-physical processes at material interfaces drive performance and degradation in various energy and environmental systems, such as high energy density batteries, fuel cells, and electrolyzers. Transport (mass, charge, heat) to and through interfaces combined with reactions on the surface dictate the performance and also the degradation of these systems. To understand the fundamental material behavior of electrochemical systems, and to improve their performance and lifetime meso-scale interfacial modeling is needed that can resolve both the surface phenomena and the transport within the interfacial region. In this talk, I will discuss our research into computational modeling of interfacial and surface phenomena that drive performance in high energy density lithium batteries. Over multiple charge/discharge cycles non-uniform lithium plating and secondary reactions at the interface drive performance degradation and pose safety risks. The interplay between local transport, surface conditions, and operating conditions dictate these interfacial changes. In our work we use multi-phase, meso-scale modeling of the interfacial region to understand the driving forces for these changes and the coupling between physical phenomena to better understand the critical physics at the interface and to design more stable, long lasting interfaces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call