Abstract
Electrically conductive polymers are a class of polymers, which can conduct electricity. Conductive polymers have found niche applications such as anti-statics. The electrochemical energy storage devices, especially lithium-ion rechargeable batteries, has grown significantly in the past two decades. Multifunctional conductive polymers may play a significant role as electrode binders for Silicon (Si) and Tin (Sn) alloy based anode electrode. Si is an attractive candidate for lithium-ion batteries because it delivers 10 times greater theoretical (∼4200 mAh/g) specific capacity than that of a traditional graphite anode (∼370 mAh/g). However, the widespread application of silicon materials has remained a significant challenge because of the large volume change during lithium insertion and extraction processes, disrupting both the Si electrode surface and electrode mechanical integrity. This large volume change causes electrode failure, leading to loss of the electrical contact and drastic capacity fading. Nanosizing the Si and Sn based anode materials provides better performance, but poses significant challenges to manufacturing of the electrode, including particle aggregation, and difficulties in maintaining constant electrical contacts to the nanoparticles, and excessive surface area. Conductive polymer binders can play multiple functions for Si electrode, including improved adhesion and connectivity, lithium ion compensation, better ion and electric conductivity as well as surface and interface modification. Organic and polymer chemistry has provided almost infinity possibilities to modify the polymeric binders to include the desired functionalities. This presentation will discuss the specific molecular design principles and synthetic steps to realize the structures and functionalities of the binders, how these binders interact with different nano Si materials, and the electrochemical performances of the electrodes based on these binders.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.